The mechanism of the hydroalkoxycarbonylation of ethene and alkene-CO copolymerization catalyzed by Pd(II)-diphosphine cations.
نویسندگان
چکیده
All the intermediates in the "carboalkoxy" pathway, and their interconversions giving complete catalytic cycles, for palladium-diphosphine-catalyzed hydroalkoxycarbonylation of alkenes, and for alkene-CO copolymerization, have been demonstrated using (31)P{(1)H} and (13)C{(1)H} NMR spectroscopy. The propagation and termination steps of the "hydride" cycles and the crossover between the hydride and carboalkoxy cycles have also been demonstrated, providing the first examples of both cycles, and of chain crossover, being delineated for the same catalyst. Comparison of the propagation and termination steps in the pathways affords new insight into the selectivity-determining steps. Thus, reaction of [Pd(dibpp)(CH(3)CN)(2)](OTf)(2) (dibpp = 1,3-(iBu(2)P)(2)C(3)H(6)) with Et(3)N and CH(3)OH affords [Pd(dibpp)(OCH(3))(CH(3)CN)]OTf, which, on exposure to CO, gives [Pd(dibpp){C(O)OCH(3)}(CH(3)CN)]OTf immediately. Labeling studies show the reaction to be readily reversible. However, the back reaction is strongly inhibited by PPh(3), indicating an insertion/deinsertion pathway. Ethene reacts with [Pd(dibpp){C(O)OCH(3)}(CH(3)CN)]OTf at 243 K to give [Pd(dibpp){CH(2)CH(2)C(O)OCH(3)}]OTf, that is, there is no intrinsic barrier to alkene insertion into the Pd--C(O)OMe bond, as had been proposed. Instead, termination is proposed to be selectivity determining. Methanolysis of the acyl intermediate [Pd(dibpp){C(O)CH(3)}L]X (L = CO, CH(3)OH; X = CF(3)SO(3) (-) (OTf(-)), CH(3)C(6)H(4)SO(3) (-) (OTs(-))) is required in the hydride cycle to give an ester and occurs at 243 K on the timescale of minutes, whereas methanolysis of the beta chelate, required to give an ester from the carbomethoxy cycle, is slow on a timescale of days, at 298 K. These results suggest that slow methanolysis of the beta chelate, rather than slow insertion of an alkene into the Pd--carboalkoxy bond, as had previously been proposed, is responsible for the dominance of the hydride mechanism in hydroalkoxycarbonylation.
منابع مشابه
New diphosphine ligands based on diphenyl ether for the Pd-catalyzed CO/ethene copolymerization.
The catalytic activity and selectivity of palladium(II) complexes of new, flexible bidentate ligands in the CO/ethene copolymerization reaction have been found to change considerably with the steric properties of the ligands.
متن کاملCarbonylation of ethene catalysed by Pd(II)-phosphine complexes.
This review deals with olefin carbonylation catalysed by Pd(II)-phosphine complexes in protic solvents. In particular, the results obtained in the carbonylation with ethene are reviewed. After a short description of the basic concepts relevant to this catalysis, the review treats in greater details the influence of the bite angle, skeletal rigidity, electronic and steric bulk properties of the ...
متن کاملThe Catalytic Copolymerization of Ethene with Carbon Monoxide Efficiently Carried out in Water-Dichloromethane-Sodium Dodecylsulfate Emulsion
The CO-ethene copolymerization has been efficiently carried out in the water/CH2Cl2 emulsion by using water insolvable Pd(II) complexes. By using the surfactant SDS very high molecular weight copolymers have been obtained with high productivity (ca. 13,000 g/(gPd.h)).
متن کاملTheoretical study on the mechanism of hydromethoxylation catalyzed by palladium(II) complex
Palladium (II) coordination complexes catalyze the reaction of alcohols with ketones to yield ethers. During the catalytic cycle, the alcohol adds selectively to the β-carbon (anti-Markovnikov). In this work, mechanism and kinetics for the reaction of methanol with methyl vinyl ketone (MVK), being catalyzed by Pd, has been theoretically investigated in detail. Using quantum mechanical approach,...
متن کاملTheoretical study on the mechanism of hydromethoxylation catalyzed by palladium(II) complex
Palladium (II) coordination complexes catalyze the reaction of alcohols with ketones to yield ethers. During the catalytic cycle, the alcohol adds selectively to the β-carbon (anti-Markovnikov). In this work, mechanism and kinetics for the reaction of methanol with methyl vinyl ketone (MVK), being catalyzed by Pd, has been theoretically investigated in detail. Using quantum mechanical approach,...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Chemistry
دوره 12 16 شماره
صفحات -
تاریخ انتشار 2006